Abstract

We sought to demonstrate the electrophysiologic (EP) mechanism of the ST-T change in Brugada syndrome. Brugada syndrome is characterized by various electrocardiographic manifestations (e.g., right bundle branch block, ST-segment elevation, and terminal T-wave inversion in the right precordial leads) and sudden cardiac death caused by ventricular fibrillation. Direct evidence in support of the EP mechanism underlying this intriguing syndrome has been lacking. Monophasic action potentials (MAPs) were obtained from three patients with the coved-type ST-segment elevation (Brugada patients) and five control patients using the contact electrode method. Epicardial MAPs were recorded during open-chest surgery in all patients. A spike-and-dome configuration was documented from epicardial sites of the right ventricular (RV) outflow tract in all Brugada patients but not in control patients. Monophasic action potential recordings from the endocardium with special focus on the RV outflow tract could not demonstrate any morphological abnormalities in three Brugada patients. The presence of a deeply notched action potential in the RV epicardium, but not in endocardium, would be expected to induce a transmural current that would contribute to elevation of the ST-segment in the right precordial leads. The spike-and-dome configuration may also prolong the epicardial action potential, thus contributing to a rapid reversal of the transmural gradients and inscription of an inverted T-wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.