Abstract

By applying nonequilibrium Green's function (NEGF) formalism combined first-principles density functional theory (DFT), we investigate the electronic transport properties of optical molecular switch based on the naphthopyran molecule with two different single-walled carbon nanotube (SWCNT) electrodes. The molecule that comprises the switch can convert between the closed and open forms upon photoexcitation. Theoretical results show that these two forms exhibit very different conductance properties both in armchair and zigzag junction, which can realize the on and off states of the molecular switch. Meantime, the chirality of the SWCNT electrodes strongly affects the switching characteristics of the molecular junctions. The maximum value of on–off ratio can reach 292 at 1.6 V for the switch with zigzag SWCNT electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.