Abstract

The electron transport properties of the system consisting of the zigzag graphene nanoflake doped with nitrogen and boron atoms connected to two Au electrodes through S-Au bonds are investigated theoretically. The results show that a nanoflake doped with nitrogen and boron atoms at edges has poor rectifying performance. While the system consisting of two pieces of graphene flakes doped by boron and nitrogen atoms, respectively, and linked with an alkane chain, shows good performance. And the significant effects of the doped sites on the current-voltage characteristics are observed. The mechanisms for these phenomena are explained by the different shifts of transmission spectra, the different spatial distributions of the molecular projected self-consistent Hamiltonian eigenstates. The negative differential resistance behavior results from the biase induced shifts of the energy level and change of the resonance transmission spectra, and the suppression of the relevant channels at some bias voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.