Abstract

Rare earth activated lithium-containing alkaline earth silicates is an intensely studied topic in the fields of luminescent materials. In this study, a cerium-activated lithium-silicate blue phosphor, Li2Ca2Si2O7:Ce3+, was explored using structural computational simulations and systematic experiments. The Li2Ca2Si2O7:Ce3+ phosphor can be efficiently excited by near-ultraviolet and cathode ray light sources. According to the spectroscopic redshift theory, time-resolved photoluminescence (TRPL) and cathodoluminescence (CL) spectra, it is determined that the broad emission of Li2Ca2Si2O7:Ce3+ comes from two different luminescent centers. In addition, Li2Ca2Si2O7:Ce3+ exhibits strong blue emission at ~415 nm with high quantum yield and stable emission under high temperature and continuous electron beam bombardment. Therefore, this study provides a new insight into developing new high-efficiency and high-purity trichromatic phosphors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call