Abstract

In this article we analyze in detail the electronic properties of the D(3h)-symmetric tris(ethylene) complexes of nickel, palladium, and platinum ([M(C(2)H(4))(3)] M=Ni, Pd, Pt). In the case of [Pd(C(2)H(4))(3)] the analysis is based on new experimental IR and Raman spectra for the matrix-isolated molecules and in all cases on the results of quantum-chemical (DFT) calculations. The experimental spectra collected for [Pd(C(2)H(4))(3)] provide evidence for several previously unobserved vibrational modes, including the in-phase and out-of-phase nu(C-C) and delta(CH(2)) modes, and the in-phase nu(M-C) mode. Special consideration is given to possible inter-ligand interactions. The interaction force constant f(CC,CC) between two C(2)H(4) ligands can be directly estimated from the spectra, and its very small value (0.002 N m(-1)) indicates the absence of any significant inter-ligand interaction. An analysis of the topology of the theoretical electron density distribution, rho(r), and the corresponding Laplacian, nabla(2)rho(r), for [Pd(C(2)H(4))(3)] and its lighter and heavier homologues [Ni(C(2)H(4))(3)] and [Pt(C(2)H(4))(3)], respectively, is in full agreement with the conclusions drawn from the experimental results. The combined experimental and quantum-chemical results provide detailed insights in the electronic properties of these prototypical ethylene complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.