Abstract

We present a computational study of the electronic structure of the stoichiometric liquid zero-gap semiconductors , and . The geometry of the fluids is described by the primitive model of charged hard spheres; the electronic structure is modelled using a tight-binding Hamiltonian. The density of states is computed considering the Madelung potential fluctuations and the topological disorder characteristic of an ionic fluid. Only the introduction of nonzero tight-binding hopping matrix elements - equivalent to the formation of chemical bonds - induces a pseudogap between the chalcogenide conduction band and the silver valence band. The Fermi level can be located in a region of a small density of states; eigenstates at are likely to exhibit disorder-induced localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.