Abstract

The electronic structure of borabenzene (C5H5B, known also as borinane, borinine, borine) is studied using modern valence bond theory in its spin-coupled (SC) form. Three different types of SC wave functions—with six active π orbitals and with four and eight active σ orbitals—are used to describe the π system of the molecule and the σ-bond framework around the boron atom. It is demonstrated that the SC picture of the π space in borabenzene is very similar to that in benzene: The spins of six distorted nonorthogonal 2pπ orbitals are combined in a spin-coupling pattern involving two dominating Kekulétype and three less important Dewar-type Rumer spin functions. This indicates that it is appropriate to consider the π-electron sextet in borabenzene as aromatic and that the reason for the reactivity of this molecule should lie with its σ framework. The two SC models of the σ bonding around B show that the boron-carbon σ bonds in borabenzene involve orbitals are “bent” to the outer side of the six-membered ring. This creates an orbital “hole” at the boron, which should represent the preferred attachment site for Lewis acids. © 1997 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call