Abstract

The electronic structure and optical properties of Mn and B, C, N co-doped molybdenum disulfide (MoS2) monolayers have been investigated through first-principles calculations. It is shown that the MoS2 monolayer reflects magnetism with a magnetic moment of 0.87 μB when co-doped with Mn-C. However, the systems co-doped with Mn-B and Mn-N atoms exhibit semiconducting behavior and their energy bandgaps are 1.03 and 0.81 eV, respectively. The bandgaps of the co-doped systems are smaller than those of the corresponding pristine forms, due to effective charge compensation between Mn and B (N) atoms. The optical properties of Mn-B (C, N) co-doped systems all reflect the redshift phenomenon. The absorption edge of the pure molybdenum disulfide monolayer is 0.8 eV, while the absorption edges of the Mn-B, Mn-C, and Mn-N co-doped systems become 0.45, 0.5, and 0 eV, respectively. As a potential material, MoS2 is widely used in many fields such as the production of optoelectronic devices, military devices, and civil devices.

Highlights

  • Layered transition metal dichalcogenides (TMD) belong to a well-defined chemical and structural family characterized by strong covalent intralayer bonding and weak van der Waals interactions between adjacent layers [1,2]

  • Etot[MoS2] and Etot[X] represent the total energy of the primitive MoS2 monolayer and the total energy doped with impurities, respectively. ni >0 means the number of atoms which are doped into the system, while ni

  • The generation of the magnetic moment is mainly because Mn provides one more electron than the Mo atom; when C substitutes for the S atom, it needs more electrons to make the 2p orbit saturated

Read more

Summary

Introduction

Layered transition metal dichalcogenides (TMD) belong to a well-defined chemical and structural family characterized by strong covalent intralayer bonding and weak van der Waals interactions between adjacent layers [1,2]. It has been proved that a very thin MoS2 owns a good property of lubrication. It is mainly because the binding energy between S atoms and metal materials is so strong that MoS2 has a great adsorbability on the metal surface. In order to get more ideal characters of MoS2, we calculated three structures including Mn-B, Mn-C, and Mn-N co-doped MoS2 monolayers in this paper. Mn-B (C, N) co-doping all make the optical absorption edges generate the redshift phenomenon for the MoS2 monolayer, which results in the enhancement of absorption for infrared light in the MoS2 monolayer. The redshift degree of the Mn-N co-doped system is the largest This result may open a new route to MoS2 in optical device applications

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.