Abstract
The electronic structure, magnetism and Fermi surface (FS) nesting of the recently discovered superconductive parent material CaFeAs2 are studied by the first-principles, based on the GGA and GGA+U methods. In the nonmagnetic state, the density of states at the Fermi level are mostly derived from the dxy, dyz and dzx orbits, just like LaOFeAs. The Fermi surfaces consist of four hole like FS sheets around the Γ-point, two electron like sheets near the Brillouin zone corner M-point, and small pockets near X-point. The hole like Fermi surfaces will strongly overlap with the electron like FS sheets, if they are shifted by the q-vector q=(π, π, 0). Such FS nesting will induce the magnetic instability and spin density wave (SDW), which has been confirmed to be more stable than other states by the calculated total energy. The calculated bare susceptibility χ0(q) peaked at M-point, and was obviously suppressed with the electron doping. This explains the emergence of the superconductivity in the electron-doped compound Ca1−xLaxFeAs2, because the electron doping suppressed the SDW and induced the superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.