Abstract

We present a theoretical study of electronic states and magnetization of two interacting electrons confined in coupled quantum dots (CQDs) presented in a magnetic field. We obtain the eigenenergies of the CQD by solving the relative two-dimensional (2D) Hamiltonian using the combined variational–exact diagonalization method. The dependence of magnetization on temperature, magnetic field strength, confining frequency and barrier height has been investigated. We have shown the singlet–triplet transitions in the ground state of the CQD spectra and the corresponding jumps in the magnetization curves. The comparisons show that our results are in very good agreement with the reported works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.