Abstract

We analyze the changes in the electronic structures of single-layer and multilayer MoS2 under pressure using first-principles methods including van der Waals interactions. For single-layer MoS2, the bond angle is found to control the electronic structure around the band gap under the pressure. For multilayer and bulk MoS2, the changes in electronic structure under pressure are mainly controlled by the coupling of layers. Under pressure, the band gap of single-layer MoS2 changes from direct to indirect, while multilayer MoS2 becomes a band metal. Analysis of the real-space distribution of band-decomposed charge density shows that this behavior can be understood in terms of the different Mo d-electron orbitals making up the states near band gap including those at the top of valence band of Γ and K points and the bottom of conduction band along Λ and at the K point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.