Abstract

In this article, we introduce a new method for solving the electronic Schrodinger equation. This new method follows the same idea followed by the mean-field configuration interaction method already developed for molecular vibrations; i.e., groups of electronic degrees of freedom are contracted together in the mean field of the other degrees. If the same partition of electronic degrees of freedom is iterated, a self-consistent field method is obtained. Making coarser partitions (i.e., including more degrees in the same groups) and discarding the high energy states, the full configuration interaction limit can be approached. In contrast with the usual group function theory, no strong orthogonality condition is enforced. We have made use of a generalized version of the fundamental formula defining a Hopf algebra structure to derive Hamiltonian and overlap matrix element expressions which respect the group structure of the wave function as well as its fermionic symmetry. These expressions are amenable to a recursive computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.