Abstract

Using an ab initio density functional approach, we report on the ground-state phase stabilities, enthalpies of formation, electronic, and elastic properties of the Ti–Pd alloy system. The calculated enthalpies of formation are in excellent agreement with available calorimetric data. We found a linear dependence between the calculated enthalpies of formation of several intermetallic structures and the Pd-concentration, indicating that each of these compounds has a very limited composition range. The elastic constants for many of these Ti–Pd intermetallics were calculated and analyzed. The B2 TiPd phase is found to be mechanically unstable with respect to the transformation into the monoclinic B19′ structure. A series of hydrides, Ti 2PdH x ( x = 1, 1.5, 2, 3, 4), have been investigated in terms of electronic structure, enthalpies of hydrogen absorption, and site preference of H atoms. Our results illustrate the physical mechanism for hydrogen absorption in term of the charge transfer, and explain why TiPd 2 does not form a stable hydride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.