Abstract

The electronic and optical properties of armchair germanene nanoribbons (AGeNRs) are studied using the first principles calculations. The band structure, band-gap size, projected density of states (PDOS), and dielectric function of AGeNRs are calculated. Moreover, the variation of these parameters as a function of various ribbon widths is investigated. By increasing the width of ribbons the band-gap size of pristine AGeNRs is decreased according to three different trends. Based on these trends, it is extracted that the AGeNRs can be divided into three categories named as n = 3P, n = 3P+1, n = 3P+2, here n is the number of germanium atoms in the width and P is an integer. Moreover, all these categories are direct band-gap materials and the order of band-gap size is changed as: EG (3P+2) < EG (3P) < EG (3P+1). Due to the direct band-gap size, it can be extracted that all of AGeNR categories are proper for optical applications. Based on the simulation results of this work, it is demonstrated that the AGeNRs are appropriate for optical devices in the range of infrared applications. In addition, the effect of uniaxial tensile and compressive strain on the band-gap size and the dielectric function of AGeNRs is investigated and it is shown that the electronic and optical properties of AGeNRs can be tuned by strain in a wide range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.