Abstract
This paper presents a different approach to the data treatment for the electronic absorption spectrum of molecular iodine, a standard experiment in the undergraduate physical chemistry laboratory. Traditionally, students analyze the transitions originating from the υ' ' = 0 level using a Birge-Sponer plot and thereby determine the various molecular constants and energies. Our treatment involves simply fitting the transition frequencies to a second-order polynomial. This fit then yields a direct determination of the important molecular constants along with the various energy terms. With the availability of common graphing programs such as Excel, Kaleidagraph, and SigmaPlot, students can take advantage of more advanced fitting techniques and no longer have to rely on simple linear plots. Additionally, students find this new approach more satisfying and we believe it has pedagogical advantages over the Birge-Sponer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.