Abstract

In the transitional mass range (~8–10 solar masses) between white dwarf formation and iron core-collapse supernovae, stars are expected to produce an electron-capture supernova. Theoretically, these progenitors are thought to be super-asymptotic giant branch stars with a degenerate O + Ne + Mg core, and electron capture onto Ne and Mg nuclei should initiate core collapse1,2,3,4. However, no supernovae have unequivocally been identified from an electron-capture origin, partly because of uncertainty in theoretical predictions. Here we present six indicators of electron-capture supernovae and show that supernova 2018zd is the only known supernova with strong evidence for or consistent with all six: progenitor identification, circumstellar material, chemical composition5,6,7, explosion energy, light curve and nucleosynthesis8,9,10,11,12. For supernova 2018zd, we infer a super-asymptotic giant branch progenitor based on the faint candidate in the pre-explosion images and the chemically enriched circumstellar material revealed by the early ultraviolet colours and flash spectroscopy. The light-curve morphology and nebular emission lines can be explained by the low explosion energy and neutron-rich nucleosynthesis produced in an electron-capture supernova. This identification provides insights into the complex stellar evolution, supernova physics, cosmic nucleosynthesis and remnant populations in the transitional mass range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.