Abstract

Extracellular electron transfer is a process by which bacterial cells can exchange electrons with a redox-active material located outside of the cell. In Shewanella oneidensis, this process is natively used to facilitate respiration using extracellular electron acceptors such as Fe(III) or an anode. Previously, it was demonstrated that this process can be used to drive the microbial electrosynthesis (MES) of 2,3-butanediol (2,3-BDO) in S. oneidensis exogenously expressing butanediol dehydrogenase (BDH). Electrons taken into the cell from a cathode are used to generate NADH, which in turn is used to reduce acetoin to 2,3-BDO via BDH. However, generating NADH via electron uptake from a cathode is energetically unfavorable, so NADH dehydrogenases couple the reaction to proton motive force. We therefore need to maintain the proton gradient across the membrane to sustain NADH production. This work explores accomplishing this task by bidirectional electron transfer, where electrons provided by the cathode go to both NADH formation and oxygen (O2) reduction by oxidases. We show that oxidases use trace dissolved oxygen in a microaerobic bioelectrical chemical system (BES), and the translocation of protons across the membrane during O2 reduction supports 2,3-BDO generation. Interestingly, this process is inhibited by high levels of dissolved oxygen in this system. In an aerated BES, O2 molecules react with the strong reductant (cathode) to form reactive oxygen species, resulting in cell death.IMPORTANCEMicrobial electrosynthesis (MES) is increasingly employed for the generation of specialty chemicals, such as biofuels, bioplastics, and cancer therapeutics. For these systems to be viable for industrial scale-up, it is important to understand the energetic requirements of the bacteria to mitigate unnecessary costs. This work demonstrates sustained production of an industrially relevant chemical driven by a cathode. Additionally, it optimizes a previously published system by removing any requirement for phototrophic energy, thereby removing the additional cost of providing a light source. We also demonstrate the severe impact of oxygen intrusion into bioelectrochemical systems, offering insight to future researchers aiming to work in an anaerobic environment. These studies provide insight into both the thermodynamics of electrosynthesis and the importance of the bioelectrochemical systems' design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call