Abstract

Measurements of the kinetic energy distribution of electrons, emitted in collision between Ne*(3P2,0) and Kr(1S0) and Xe(1S0), have been performed in a crossed molecular beam apparatus which employs a mass spectrometer and a hemispherical electron analyzer as detectors. The analysis of the obtained experimental results provides new insights on electronic rearrangements and electronic angular momentum coupling effects that determine relevant properties of the transition state of autoionization processes, and that we have found useful to classify as adiabatic and non-adiabatic effects. In particular, while the adiabatic effects control sequence, energy, and symmetry of quantum states accessible to both reagents and products in the probed collision energy range, the non-adiabatic ones trigger the passage from entrance to exit channels. The obtained results are important not only to compact previous theoretical schemes of autoionization reactions in a unified representation but also to cast light on the role of electronic rearrangements within the transition state of many other types of chemical processes that are more difficult to characterize.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call