Abstract

Using transmission electron microscopy-related techniques, we have compared the degradation behaviors of several different types of ZnS nanostructures, including the ZnS nanosheets synthesized by hydrothermal method (with different oxygen impurity concentration) and ZnS nanobelts grown using thermal evaporation. We have identified that displacement damage, sputtering, and oxidation mechanisms exist during the electron irradiation process. While oxidation of the nanostructure is always observed, displacement damage appears to be the dominant mechanism contributing to the final structural collapse of ZnS nanosheets (synthesized via hydrothermal methods), but sputtering mechanism becomes critical in changing the surface roughness of the ZnS nanobelts (grown by thermal evaporation). The specific damage mechanisms of these nanomaterials disclose that different synthesis process results in different structure quality (particularly impurity related interior defects) of the ZnS nanostructures, which determines their specific degradation behaviors under the electron beam irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call