Abstract

The undesirable absorption bandwidth is the main limitation for the application of microwave absorbing materials. Noting that the design of structure and composition of absorbing coating allows it to obtain a satisfying absorption bandwidth and to avoid weight increasing, honeycomb and its sandwich structures coated by various absorbant have been developed and measured using an arch measurement system over 2−18 GHz. To further understand the absorption mechanisms of honeycomb structural materials, simulation based on finite element method and transmission line theory is performed to analyze the different responses to the applied microwave between honeycomb structural materials and uniform-medium slab materials. The proper composition design allows control over the microwave loss mechanisms, which optimize the coating to possess both of the dielectric and magnetic advantages. For the honeycomb structural materials, the magnetic resonation is found for the first time, which is resulting from the periodic honeycomb walls on both sides of the dielectric cavity (consisting of the aramid paper interlayer and vacuum hexagonal prisms). In addition, the conversion of structure from solid to honeycomb brings about changes in impedance, propagating path, effective wavelength, effective attenuation area, microwave phases, and inductive coupling effect, etc., which result in a better microwave absorbing performance. The honeycomb sandwich structure coated by CIP/CB/EP with the weight ratio of 4:0.03:1 shows the absorption bandwidth of ∼9.8 GHz for reflection loss (RL) lower than -10 dB which covers part of the S and C bands and almost the whole X and Ku bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.