Abstract

By the transfer matrix approach we numerically study the electromagnetic properties (narrow peak positions) of the transmission spectra for microspheres coated by a multilayered stack with the generalized Cantor structure (fractal). As opposed to the standard Cantor system with removed γ/3 (γ = 1) section we consider here the solid stack with Si/SiO2 layers at general γ value. In such a solid composition the SiO2 layers replace the empty Cantor sections and the parameter γ acquires meaning of a specific control parameter. At successive generations the central layers (in blocks of the spherical stack) acquire a progressive decreased width that leads to generation of the radially inhomogeneous defects. We show that the wave phase interference in such a fractal pattern leads to formation of very narrow electromagnetic transmittance resonances that can be used in modern optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.