Abstract

The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a ‘reflected’ proton beam is present. Maximum growth occurs for propagation parallel to the ambient magnetic field B, but this instability also displays significant growth at wavevectors oblique to B. Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with the ‘diffuse’ ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call