Abstract

In this paper, an electromagnetic forming (EMF) system with an energy of 200 kJ (25 kV, 640 μF) was designed and fabricated to flange a large-scale aluminum alloy sheet with bore, whose outer diameter, bore diameter, and sheet thickness are 640 mm, 180 mm, and 5 mm, respectively. The stress distribution of the midplane of the coil was calculated to check the coil structural strength. And a multiphysics coupled finite element model, which involves the coupling of circuit, electromagnetic field, deformation field, and thermal field, was built to assess the forming capacity of the EMF system. Furthermore, the experimental results of electromagnetic flanging in the case of 155 kJ are presented and compared with the numerical results. Both the simulation forming depth 87 mm and experiment forming depth 90 mm show that the EMF system is effective to form the large-scale sheet workpiece.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.