Abstract

Abstract We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range of z ≈ 0.12 – 2.6 discovered over 2004–2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is ≈ 3000 times less than the median value of on-axis short GRB X-ray afterglows, and ≳104 times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-infrared (NIR) counterpart to GW170817 is comparatively under-luminous by a factor of ≈ 3 – 5 , indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on ≲ 1 day timescales also rules out a “blue” kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC 4993, in the context of short GRB host galaxy stellar population properties. We find that NGC 4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo volume will be crucial in delineating the properties of the host galaxies of neutron star–neutron star (NS–NS) mergers, and connecting them to their cosmological counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.