Abstract

The effects on the plasma/electrodynamic environment in the low-latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its estimated field-line-integrated conductance; it is found that the “comma-like” flow around the cloud seen in the ALTAIR (Advanced Research Project Agency [ARPA] Long-range Tracking and Identification Radar) observations can be explained by the perturbations to the electric field produced by the conductance gradients around the cloud. Next, the conductance is introduced into a simulation of the development of the Rayleigh-Taylor instability. The simulations suggest that a moderately denser cloud than the MOSC cloud, closer to the bottom edge of the F layer, could indeed suppress the development of the low-density plumes and the shorter-wavelength irregularities associated with radio scintillation that form with the Rayleigh-Taylor instability in the low-latitude ionosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call