Abstract

Epigenetic modifications in DNA are strongly linked to the triggering and development of pathophysiological disorders and cancer diseases. The halogenation of DNA via radical species, particularly the formation of 5-chlorocytosine (ClC), has recently emerged as epigenetic modification. This work deals for the first time with the exploration of the electrochemical behaviour of ClC on different carbon electrodes such as glassy carbon and boron-doped diamond using cyclic voltammetry and square wave voltammetry. When comparing both carbon materials, the use of glassy carbon turned out to be the appropriate in terms of a more well-defined anodic wave and higher sensitivity. The electrochemical oxidation potential of ClC resulted to be linearly dependent on the pH with a maximum current intensity in acetic acid buffer solution under the conditions used. Moreover, a linear response between peak current intensity and ClC concentration was obtained within the range of 200 and 1000 μM with a limit of detection of 200 μM. In order to elucidate the reaction mechanism of the process, the main oxidation products after a preparative electrolysis were detected by HPLC-MS. Simultaneous detection of ClC in the presence of the unmodified cytosine and mixtures containing other nucleic bases such as guanine, adenine and thymine was also addressed. Finally, the effect of the halogen atom (X = F, Cl, Br) located at position C-5 of the cytosine entity upon the electrooxidation process was examined by theoretical calculations, too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.