Abstract

The electrochemical behavior of a platinum electrode in a set of 1-alkyl ether (and 1-alkyl)-3-methylimidazolium room-temperature ionic liquids (RTILs) 1–3 ([CxOyMim]+[Anion]− or [CxMim]+[Anion]−, where Mim = 3-methylimidazolium; CxOy = 1-alkyl ether; C7O3 = -(CH2)2O(CH2)2O(CH2)2OCH3; C3O1 = -(CH2)2OCH3; Cx = 1-alkyl; C10 = C10H21; C4 = C4H9; and \( {\left[ {{\text{Anion}}} \right]}^{ - } = {\text{H}}_{3} {\text{CSO}}^{ - }_{3} ,{\text{ BF}}^{ - }_{4} {\text{, or PF}}^{ - }_{6} \)) was studied by cyclic voltammetry and electrical conductivity. This complementary set of imidazolium RTILs allowed us to explore the effect of the imidazolium cation and the counter-ion, both of which affected the electrochemical window of these RTILs. Various electrochemical events with low current values were observed, which diminished the electrochemical windows. Interestingly, RTILs 2b [1-(2-methoxyethyl)-3-methylimidazolium tetrafluoroborate] and 2d [1-butyl-3-methylimidazolium tetrafluoroborate] showed quasireversible charge transfer processes. The length of the functional group attached to the imidazolium cation was shown to be of great influence as larger electrochemical windows, as well as lower electrical conductivities, were obtained with the longer C7O3 and C10 functional groups. The largest electrochemical window of 2.0 V was achieved with RTIL 2c, 1-decyl-3-methylimidazolium tetrafluoroborate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.