Abstract

We report on the first observation of the production of C2/C3 species from the electrochemical reduction of CO2 at the surfaces of copper-modified boron-doped diamond (Cu-BDD) electrodes in aqueous media at room temperature and ambient pressure. The product distribution is dependent on the amount of deposited Cu and the applied potential. At low potential, −1.0 V (vs. Ag/AgCl), ethanol was observed as the main product with acetaldehyde and acetone as side products. The highest faradaic efficiencies obtained for ethanol, acetaldehyde and acetone were 42.4%, 13.7% and 7%, respectively. The Cu particles on the surfaces of the BDD electrodes remained stable, showing insignificant differences after the CO2 electroreduction process under these particular conditions. The efficiency dropped with increasing Cu deposition time and at high reduction potentials. Moreover, we present comparisons with a Cu plate and Cu-modified glassy carbon as working electrodes under the same conditions, which explains the specific behavior of the CO2 reduction process on the Cu-BDD electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.