Abstract

Flavin adenine dinucleotide (FAD)-modified zinc oxide self-assembly films were prepared using repeated cyclic voltammetry. The electrochemical reaction of the hemoglobin with the FAD/ZnO self-assembly film-modified electrodes and their electrocatalytic properties were investigated. This paper describes the successful loading of the electrochemically active molecules of hemoglobin and FAD along with ZnO by electrochemical method. In addition to the cyclic voltammetry, an electrochemical quartz crystal microbalance was used to study the growth mechanism and the properties of the films. The FAD/zinc oxide films exhibited a single redox couple, which corresponded to the FAD redox couple. The electrocatalytic properties of the O2, H2O2, trichloroacetic acid and SO(3)2- were studied by the FAD/zinc oxide films in the absence or in the presence of hemoglobin. The electrocatalytic reduction current had been developed from the cathodic peak of the FAD/zinc oxide redox couple. The electrocatalytic process involved an interaction of hemoglobin and FAD/GC film-modified electrode to increase the electrocatalytic reduction current. The electrocatalytic reduction of O2 using the FAD/zinc oxide films was investigated by cyclic voltammetry and rotating ring-disk electrode methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.