Abstract

The electrochemical performance of La0.65Sr0.3MnO3-type (LSM) anode-supported single cells, produced by alternative production processes, has been investigated at intermediate temperatures. In particular, three different variations of the production route were investigated in more detail: (1) the use of nonground LSM powder for the cathode current collector layer, (2) the use of noncalcined and nonground YSZ powder for the cathode functional layer, and (3) the use of tape casting versus warm pressing as the production process for anode substrates. Results from electrochemical measurements performed between 700 and 900°C with H2 (3vol%H2O) as fuel gas and air as the oxidant showed that performance increased with increasing grain size of the outer cathode current collector layer: the highest performance was achieved with nonground LSM powder. Furthermore, performance was not adversely influenced by the use of noncalcined and nonground YSZ for the cathode functional layer. Also the use of anode substrates with a thickness of about 0.7mm and produced by tape casting, instead of those with a thickness of about 1.5mm and applied by warm pressing, did not detrimentally affect the electrochemical performance of this type of SOFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.