Abstract

In this work, we developed a perovskite structured samarium cobalt oxide nanoparticles (SmCoO3 NPs) with the aid of the co-precipitation method. The rare earth metal (Sm) and cobalt oxide combined to form a perovskite lattice structure. One-pot route synthesized SmCoO3 NPs were scrutinized successfully through various physicochemical techniques. Concerning its effective thermal stability and electrical properties, the synthesized SmCoO3 NPs have been effectively implemented in the electrochemical evaluation of promethazine hydrochloride (PHY) using cyclic voltammetry. The electrochemical detection of PHY was performed through SmCoO3 NPs-modified glassy carbon electrode (GCE) and unmodified GCE. The electron transfer kinetics, effect of scan rate, the influence of pH, electroactive surface area, selectivity, and sensitivity have been studied. The electron charge transfer rate (Rct) and electrolyte resistance (Rs) were calculated to be 105.59 (Ω) and 150 (Ω) in the ferricyanide probe, indicating great facilitation of the electron transfer between PHY and SmCoO3 NPs deposited on the electrode surface. Further, the optimized SmCoO3-modified GCE exemplifies excellent selectivity, storage stability, reproducibility, repeatability, detection limit (5 nM), sensitivity (0.594 μA μM−1 cm−2), and wide consecutive linear ranges, respectively. Besides, the proposed method has been effectively employed for the detection of PHY in the various real samples which reveals good recoveries of 95.40–99.17%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call