Abstract

A novel electrochemical sensor based on MnCO3 nanostructures incorporated into carbon fibers (MnCO3NS/CF), including a molecularly imprinting polymer (MIP), was developed for the determination of Ochratoxin A (OTA). In this study, a sensitive and selective sensor design for OTA detection was successfully performed by utilizing the selectivity and catalysis properties of MIP and the synthesized MnCO3NS/CF material at the same time. MnCO3 nanostructures incorporated into carbon fibers were first characterized by using various analytical techniques. The sensor revealed a linearity towards OTA in the range of 1.0 × 10-11-1.0 × 10-9 mol L-1 with a detection limit (LOD) of 2.0 × 10-12 mol L-1. The improved electrochemical signal strategy was achieved by high electrical conductivity on the electrode surface, providing fast electron transportation. In particular, the analysis process could be finished in less than 5.0 min without complex and expensive equipment. Lastly, the molecular imprinted electrochemical sensor also revealed superior stability, repeatability and reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.