Abstract

A 3D assembly of nitrogen-doped carbon nanofibers (NCFs) derived from polyacrylonitrile was synthesized by a combined electrospinning/carbonization technique and was used as the positive current collector in lithium sulfur (Li-S) batteries containing a Li2S6 catholyte solution. The physical and electrochemical behavior of the NCFs were investigated and it was found that their electrochemical performances depended on the pyrolysis temperature. Of the samples carbonized at 800, 900 and 1000 °C, those carbonized at 900 °C performed best, and delivered a reversible capacity of 875 mAh•g−1 at a high sulfur loading of 4.19 mg•cm2 and retained at 707 mAh•g−1 after 250 cycles at 0.2 C. The coulombic efficiency of the NCF-900@Li2S6 electrode was almost 98.55% over the entire cycle life. In addition, the capacity retention of the electrode reached 81.53% even at a high current density of 1 C for over 150 cycles. It was found that the NCFs carbonized at 900 °C had the highest electrical conductivity, which might be the dominant factor that determined its performance for use as a positive current collector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.