Abstract

The platinum group metals (Pt, Ir and Ru) and the carbide-derived carbon support with the very high specific surface area were used to synthesise the low noble metal loading Pt-C, IrPt-C and RuPt-C alloy catalysts. The alloying of the platinum group metals in the studied catalysts was proved by the several independent physical characterization methods like: the X-ray diffraction, time of flight secondary ion mass-spectrometry, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy. The electrocatalytic activity toward oxygen reduction reaction of the synthesised catalysts in an alkaline solution was studied and compared with the commercially available Pt-Vulcan. The combined and detail approach using the transmission electron microscopy and inductively coupled plasma mass spectrometry for estimation of the surface area of metal particles is provided. The noticeably higher calculated mass corrected and specific kinetic current density values for Pt-C catalyst were established. For IrPt-C and RuPt-C alloy catalysts, mass corrected current density values are comparable with the commercial Pt-Vulcan. The specific kinetic current density values increase in the following sequence: RuPt-C < IrPt-C < Pt-Vulcan < Pt-C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.