Abstract
Palladium nanoparticles in the form of a layer on the surface of an electrode are shown to be electrocatalytic with respect to the four-electron oxidation of hydrazine to form dinitrogen. Quantitative voltammetry shows that the reduced overpotential in comparison with both carbon and bulk palladium electrodes partly arises from the increased surface area of the interface and partly from an increased catalytic activity of the nanoparticles relative to the bulk material. The relative catalytic activity per unit surface area of the nanoparticles as compared with the bulk material is shown to be ca. 35-45.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.