Abstract

Plants can be affected by numerous environmental stressors with spatially heterogeneous actions on their bodies. A fast systemic photosynthetic response, which is connected with long-distance electrical signalling, plays an important role in the adaptation of higher plants to the action of stressors. Potentially, measurement of the response by using a photochemical reflectance index (PRI) could be the basis of monitoring photosynthesis under spatially heterogeneous stressors; however, the method has not been previously used for investigating the systemic photosynthetic response. We investigated changes in PRI and photosynthetic parameters (quantum yields of PSI and PSII and nonphotochemical quenching) in intact leaves of pea (Pisum sativum L.) after local heating of another leaf and the propagation of electrical signals through the plant body. We showed that electrical signals decreased the quantum yields of PSI and PSII and increased the nonphotochemical quenching of intact leaves in times ranging from minutes to tens of minutes; the changes were strongly connected with changes in PRI. Additional analysis showed that changes in PRI were caused by an increase of the energy-dependent quenching induced by electrical signals. Thus PRI can be potentially used for monitoring the systemic photosynthetic response connected with long-distance electrical signalling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call