Abstract

Electrical impedance spectroscopy (EIS) was applied to stems of Scots pine (Pinus sylvestris L.) in a provenance field trial during frost hardening to find an EIS parameter for assessing frost hardiness (FH) without a controlled freezing test. The FH of stems and needles assessed by controlled freezing tests was compared with the equivalent circuit EIS parameters of a distributed model of stems (not exposed to controlled freezing treatment) and with dry matter (DM) content of stems. Significant differences in the equivalent circuit parameters, FH and DM content were found between provenances. The relaxation time (tau(1)), describing the peak of the high frequency arc of the impedance spectrum, and the intracellular resistance (r(i)) of stems increased with increasing FH. According to the linear regression, the coefficient of determination (R(2)) between the FH of stems and needles with tau(1) of the stem was 0.87 and 0.89, and with r(i) of the stem 0.74 and 0.85, respectively. The relation between FH and tau(1) changed with the degree of hardiness. The highest coefficient of determination was 0.95 in September when the FH of needles, ranging from -10 degrees C to -25 degrees C, was predicted with an accuracy of +/-2.0 degrees C. The resistance parameter r(2), describing the width of the low frequency arc of the impedance spectrum, decreased prior to and during the initial hardening: significant differences were found between provenances. This indicates that r(2) was not related to frost hardening per se. It is concluded that it is possible to distinguish the hardening patterns of different provenances by tau(1) in the rapid phase of hardening without controlled freezing tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.