Abstract

Progress in the field of femtogram (10 −15 g) mass delivery relies on finding dependable transport vehicles and uncomplicated methods to tailor the deposition of active substances. Here, current-conductive containers consisting of turbostratic carbon nanotubes were used to store a light-emitting ternary alloy and guide its delivery on demand. We found that the electrically-activated delivery process of this sublimable compound, performed inside a transmission electron microscope, was highly dependent on factors such as the substrate type and current injection mode. Furthermore, our observations suggest that the alleged “missing matter” problem is not solely due to surface migration. Besides extending the field of electrical delivery to the realm of functional materials, the extrusion and mass transport of a sublimable II–VI compound demonstrates that it is possible to guide vapor migration using a carbon nanotube support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.