Abstract

Abstract. We report on the electric field variations during Saharan dust advection over two atmospheric remote stations in Greece, using synergistic observations of the vertical atmospheric electric field strength (Ez) at ground level and the lidar-derived particle backscatter coefficient profiles. Both parameters were monitored for the first time with the simultaneous deployment of a ground-based field mill electrometer and a multi-wavelength polarization lidar. The field mill time series are processed to extract the diurnal variations of the global electric circuit and remove fast field perturbations due to peak lightning activity. In order to identify the influence of the elevated dust layers on the ground Ez, we extract a localized reference electric field from the time series that reflects the local fair-weather activity. Then, we compare it with the reconstructed daily average behaviour of the electric field and the Saharan dust layers' evolution, as depicted by the lidar. The observed enhancement of the vertical electric field (up to ∼100 V m−1), for detached pure dust layers, suggests the presence of in-layer electric charges. Although higher dust loads are expected to result in such an electric field enhancement, episodic cases that reduce the electric field are also observed (up to ∼60 V m−1). To quantitatively approach our results, we examine the dependency of Ez against theoretical assumptions for the distribution of separated charges within the electrified dust layer. Electrically neutral dust is approximated by atmospheric conductivity reduction, while charge separation areas within electrically active dust layers are approximated as finite-extent cylinders. This physical approximation constitutes a more realistic description of the distribution of charges, as opposed to infinite-extent geometries, and allows for analytical solutions of the electric field strength so that observed variations during the monitored dust outbreaks can be explained.

Highlights

  • The global electric circuit (GEC) represents the electric current pathway in Earth’s atmosphere

  • We focus on monitoring perturbations of the E field near the ground caused by the transported dust layers, with special emphasis on slow E-field perturbations, and we attempt to classify and comment on the electrical activity of the dust layers

  • According to the effect over the E-field time series, the dust outbreaks examined are separated into two classes, the ones that effectuate an enhancement to the ground electric field and those inducing a reduction with respect to the local reference field

Read more

Summary

Introduction

The global electric circuit (GEC) represents the electric current pathway in Earth’s atmosphere. The GEC is established by the conducting atmosphere sandwiched between the conductive Earth and the conductive mesosphere–ionosphere (Williams, 2009). Atmospheric electric parameters, such as the vertical electric field (Ez) and induced air-to-Earth current (Ic) through the GEC, greatly depend on ambient weather conditions and convective meteorological systems (Kourtidis et al, 2020) due to the re-distribution of charged or uncharged aerosols and terrestrial radioactive particles in Earth’s atmosphere (Harrison and Ingram, 2005; Wright, 1933). The daily variation of the global thunderstorm activity modulates the electric field strength, and the resulting diurnal variation is represented by the Carnegie curve (Harrison, 2013)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call