Abstract

Recent empirical neuroscience evidence increasingly supports an active role for the endogenous electromagnetic (EM) field system of brain tissue. These results undermine the long-held view that the field system is a causally inert byproduct of action potential and synapse electrochemical activity. The dominant originating mechanism for the endogenous EM field remains undetermined. The new observations make the isolation of an unambiguous original EM field source a matter of some urgency. As part of the process of elaboration of the field systems produced by coherent transmembrane filamentary currents (the most plausible original mechanism), this paper looks at the contribution by a localized density of cooperating ion channels in the form of the macular synaptic plaque engaged in conducting a post-synaptic current. The method uses the volume conduction formalism driven by filamentary currents that stand in for ion channels. Not surprisingly, the result is a pulsing dipole. Despite its extreme material abstraction, the result forms one of the basic mechanisms for future models capable of revealing whole-neuron and network-level endogenous EM field system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.