Abstract

Dual phase xenon detectors are widely used in experimental searches for galactic dark matter particles. The origin of single electron backgrounds following prompt scintillation and proportional scintillation signals in these detectors is not fully understood, although there has been progress in recent years. In this paper, we describe single electron backgrounds in 83mKr calibration events and their correlation with drift and extraction fields, using the Particle Identification in Xenon at Yale (PIXeY) dual-phase xenon time projection chamber. The single electron background induced by the Fowler-Nordheim (FN) effect is measured, and its electric field dependence is quantified. The photoionization of grids and impurities by prompt scintillation and proportional scintillation also contributes to the single electron background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.