Abstract

BackgroundThe electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung. Up to now, the GI index was evaluated for plausibility but the analysis of how it is influenced by various physiological factors is still missing. The aim of our study was to evaluate the influence of proportion of open lung regions measured by EIT on the GI index.MethodsA constant low-flow inflation maneuver was performed in 18 acute respiratory distress syndrome (ARDS) patients (58 ± 14 years, mean age ± SD) and 8 lung-healthy patients (41 ± 12 years) under controlled mechanical ventilation. EIT raw data were acquired at 25 scans/s and reconstructed offline. Recruited lung regions were identified as those image pixels of the lung regions within the EIT scans where local impedance amplitudes exceeded 10% of the maximum amplitude during the maneuver. A series of GI indices was calculated during mechanical lung inflation, based on the differential images obtained between different time points. Respiratory system elastance (Ers) values were calculated at 10 lung volume levels during low-flow maneuver.ResultsThe GI index decreased during low-flow inflation, while the percentage of open lung regions increased. The values correlated highly in both ARDS (r2 = 0.88 ± 0.08, p < 0.01) and lung-healthy patients (r2 = 0.92 ± 0.05, p < 0.01). Ers and GI index were also significantly correlated in 16 out of 18 ARDS (r2 = 0.84 ± 0.13, p < 0.01) and in 6 out of 8 lung-healthy patients (r2 = 0.84 ± 0.07, p < 0.01). Significant differences were found in GI values between two groups (0.52 ± 0.21 for ARDS and 0.41 ± 0.04 for lung-healthy patients, p < 0.05) as well in Ers values (0.017 ± 0.008 cmH2O/ml for ARDS and 0.009 ± 0.001 cmH2O/ml for lung-healthy patients, p < 0.01).ConclusionsWe conclude that the GI index is a reliable measure of ventilation heterogeneity highly correlated with lung recruitability measured with EIT. The GI index may prove to be a useful EIT-based index to guide ventilation therapy.

Highlights

  • The electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung

  • Grant et al used the regional filling characteristics to indicate tidal hyperinflation or recruitment [25]. These parameters summarizing the dynamic information obtained by EIT restrict to the time changes of regions of interest (ROIs), i.e. impedance pattern associated with different ROIs will not be described by these parameters

  • Since opening and closing of alveoli strongly influence ventilation distribution, we evaluated the influence of proportion of open lung regions measured by EIT on the GI index

Read more

Summary

Introduction

The electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung. Electrical impedance tomography (EIT) is a non-invasive, radiation-free imaging technique. It measures regional lung ventilation and aeration distribution by means of changes in electrical potentials at the skin surface of the chest wall during breathing cycles [4]. Grant et al used the regional filling characteristics to indicate tidal hyperinflation or recruitment [25] These parameters summarizing the dynamic information obtained by EIT restrict to the time changes of regions of interest (ROIs), i.e. impedance pattern associated with different ROIs will not be described by these parameters

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call