Abstract
AbstractLet p and $\ell $ be primes such that $p> 3$ and $p \mid \ell -1$ and k be an even integer. We use deformation theory of pseudo-representations to study the completion of the Hecke algebra acting on the space of cuspidal modular forms of weight k and level $\Gamma _0(\ell )$ at the maximal Eisenstein ideal containing p. We give a necessary and sufficient condition for the $\mathbb {Z}_p$ -rank of this Hecke algebra to be greater than $1$ in terms of vanishing of the cup products of certain global Galois cohomology classes. We also recover some of the results proven by Wake and Wang-Erickson for $k=2$ using our methods. In addition, we prove some $R=\mathbb {T}$ theorems under certain hypotheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Institute of Mathematics of Jussieu
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.