Abstract

Alternative splicing of the fibronectin gene transcript gives rise to forms that include the EIIIA (or ED-A) segment. EIIIA-containing fibronectins are prominently expressed during embryogenesis and wound healing and appear to mediate changes in cell adhesion and gene expression. Nonetheless, integrins that bind the EIIIA segment have not been identified. We previously mapped the epitope for two function-blocking monoclonal antibodies to the C-C' loop region of the EIIIA segment (Liao, Y.-F., Wieder, K. G., Classen, J. M., and Van De Water, L. (1999) J. Biol. Chem. 274, 17876-17884). The sequence of this epitope ((39)PEDGIHELFP(48)) resembles the sequence within tenascin-C to which the integrin alpha(9)beta(1) binds. We now report that either integrin alpha(9)beta(1) or alpha(4)beta(1) can mediate cell adhesion to the EIIIA segment. Moreover, this interaction is blocked both by epitope-mapped EIIIA antibodies as well as by the respective anti-integrins. Deletion mutants of the EIIIA segment that include the C-C' loop and flanking sequence bind cells expressing either alpha(9)beta(1) or alpha(4)beta(1). Adhesion of alpha(4)beta(1)-containing MOLT-3 cells to the EIIIA segment stimulates phosphorylation of p44/42 MAP kinase. Our observation that two integrins bind the EIIIA segment establishes a novel mechanism by which cell adhesion to fibronectin is regulated by alternative splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.