Abstract

Inclusive STEM (traditionally known to stand for “Science, Technology, Engineering, and Math”) high schools are emerging across the country as a mechanism for improving STEM education and getting more and diverse students into STEM majors and careers. However, there is no consensus on what these schools are or should be, making it difficult to both evaluate their effectiveness and scale successful models. We addressed this problem by working with inclusive STEM high school leaders and stakeholders to articulate and understand their intended school models. This “bottom-up” approach is in contrast with other studies that have taken a “top-down,” literature-based approach to defining STEM schools. Through this process, we identified 76 critical components of STEM schools and derived a theoretical framework of eight elements that represent the common goals and strategies employed by inclusive STEM high schools across the country: Personalization of Learning; Problem-Based Learning; Rigorous Learning; Career, Technology, and Life Skills; School Community and Belonging; External Community; Staff Foundations; and External Factors. This framework offers a clear picture of what exactly inclusive STEM schools are and common language for both researchers and practitioners. Interestingly, STEM disciplinary content did not emerge as a defining component across school models. Findings suggest that STEM school leaders and stakeholders view their STEM school identity as rooted in pedagogy, transferrable skills, school culture, and rigorous instruction across all subjects, including, but not restricted to, STEM. This raises questions about the goals of inclusive STEM high schools and the STEM discipline outcomes that we should reasonably expect to see from STEM schools.

Highlights

  • Inclusive STEM high schools are emerging across the country as a mechanism for improving STEM education and getting more and diverse students into STEM majors and careers

  • The number of jobs in the STEM sector will increase more rapidly over the decade than jobs in any other sector (Committee on STEM Education National Science and Technology Council 2013; Klobuchar, 2014): analysts estimate that by 2018, non-STEM jobs will increase by 9.8%, while STEM jobs will increase by 17% (Langdon et al 2011)

  • We address the questions: What is an inclusive STEM high school? What specific components are present in these schools? Why are components present, meaning, what specific outcomes are intended for students, staff, and the community at large? We examine how inclusive STEM high schools themselves articulate what they are; how this may align with the national push for improved science, technology, engineering, and math education; and the outcomes they intend for their students

Read more

Summary

Introduction

Inclusive STEM (traditionally known to stand for “Science, Technology, Engineering, and Math”) high schools are emerging across the country as a mechanism for improving STEM education and getting more and diverse students into STEM majors and careers. The STEM education movement has gained dramatic momentum over the past decade This is reflected in the proliferation of local and state STEM programs that exist across the country, both in schools and out, and in the numerous federal reports and policies, the federal budget, and initiatives like the White House’s Educate to Innovate (National Research Council (NRC) 2011, 2013; National Academies 2005; President’s Council of Advisors in Science and Technology (PCAST) 2010). During his administration, President Obama has made improving STEM education a priority, backed by a. Coming on top of an already-existing shortage of qualified STEM workers, these projections seem cause for serious concern

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call