Abstract

An algorithm based on the Ehrlich–Aberth root-finding method is presented for the computation of the eigenvalues of a T-palindromic matrix polynomial. A structured linearization of the polynomial represented in the Dickson basis is introduced in order to exploit the symmetry of the roots by halving the total number of the required approximations. The rank structure properties of the linearization allow the design of a fast and numerically robust implementation of the root-finding iteration. Numerical experiments that confirm the effectiveness and the robustness of the approach are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.