Abstract

A peptide containing the transmembrane domain of the human EGF receptor was studied in fluid lipid bilayers for insight into receptor tyrosine kinase lateral associations in cell membranes. The peptide comprised the 23-amino acid hydrophobic segment thought to span the membrane (Ile 622 to Met 644 of the EGF receptor), plus the first 10 amino acids of the receptor's cytoplasmic domain (Arg 645 to Thr 654). Probes for solid-state NMR spectroscopy were incorporated by deuteration of the methyl side chains of alanine at positions 623 and 637. 2H-NMR spectra were recorded from 25 to 65°C in membranes composed of 1-palmitoyl-2-oleoyl phosphatidylcholine, with and without 33% cholesterol, and relaxation times were measured. Peptide concentration ranged from 0.5 to 10 mol %. The peptide behaved as predominant monomers undergoing rapid symmetric rotational diffusion; however, there was evidence of reversible side-to-side interaction among the hydrophobic transmembrane domains, particularly at physiological temperatures and in the presence of natural concentrations of cholesterol. The results of these experiments in fluid membranes are consistent with the existence of lipid-protein interactions that would predispose to receptor microdomain formation in membranes of higher animal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.