Abstract

The application of exogenous biodegradation strains in pesticide-polluted soils encounters the challenges of migration and persistence of inoculants. In this study, the degradation characteristics, vertical migration capacity, and microbial ecological risk assessment of an enhanced green fluorescent protein (EGFP)-tagged 2-Methyl-4-chlorophenoxyacetic acid (MCPA)-degrading strain Cupriavidus gilardii T1 (EGFP) were investigated in the laboratory and field soils. The optimum remediation conditions for T1 (EGFP) was characterized in soils. Meanwhile, leaching experiments showed that T1 (EGFP) migrated vertically downwards in soil and contribute to the degradation of MCPA at different depths. After inoculation with T1 (EGFP), a high expression levels of EGFP gene was observed at 28 d in the laboratory soil and at 45 d in the field soil. The degradation rates of MCPA were ≥ 60% in the laboratory soil and ≥ 48% in the field soil, indicating that T1 (EGFP) can efficiently and continuously remove MCPA in both laboratory and field conditions. In addition, the inoculation of T1 (EGFP) not only showed no significant impact on the soil microbial community structure but also can alleviate the negative effects induced by MCPA to some extent. Overall, our findings suggested that T1 (EGFP) strain is an ecologically safe resource for the in situ bioremediation of MCPA-contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.