Abstract
AbstractBACKGROUND: The liquid‐phase catalytic oxidation of aromatic hydrocarbons by molecular oxygen is a commercially important process. We consider the MnCO3‐promoted oxidation of toluene to produce benzaldehyde and benzoic acid. In this investigation, toluene was oxidized with 25.0% conversion and 80.8% selectivity with respect to benzoic acid in the presence of MnCO3 under 1.0 MPa of oxygen at 190 °C for 2 h.RESULTS: Moreover, the oxidation of other aromatic hydrocarbons, such as ethylbenzene, p‐xylene, m‐xylene, o‐xylene, and p‐chlorotoluene, were also efficiently promoted by MnCO3.CONCLUSION: It is concluded that an efficient oxidation of aromatic hydrocarbons can be achieved in the presence of MnCO3 under solvent‐free conditions. The catalytically active species are high‐valence Mn generated via the action of MnCO3 with oxygen. Copyright © 2007 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Technology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.