Abstract

The adenovirus vector vaccines induce humoral and cellular immune responses and have been used to develop vaccines for effective prevention of life-threating viruses, such as Ebola and Coronaviruses. High demand of vaccines worldwide requires optimization of the production process. Perfusion process increases cell concentration and volumetric productivity, so that it becomes the commonly used strategy in vaccine production In this study, we optimized and developed a perfusion process for the adenovirus-based zoster vaccine production efficiently. We first tested different perfusion strategies in shake flasks, showing semi-continuous strategies for optimal HEK 293 cell growth. We then evaluated three empirical key process parameters (cell concentration at the time of infection (VCC), multiplicity of infection (MOI), virus production pH) by the design of experiment (DoE) method, from which the robust setpoint (VCC 1.04 × 107 cells/mL, MOI 9, and virus production pH 7.17) was confirmed in both shake flask and 2 L benchtop bioreactor. In the bioreactor, we compared the performances of two perfusion systems, the commercially-available XCell ATF® system and a novel peristaltic pump-driven alternating tangential flow perfusion system (PATFP system) that we developed. During cell cultivation stage, both perfusion systems have comparable performances regarding viable cell concentration and cell viability. At 2 dpi, the PATFP system resulted in an adenovirus titer of 2.1 × 1010 IFU/mL and cell-specific virus yield of 2,062 IFU/cell, reaching 75% and 77% of values for XCell ATF® system. This study demonstrates the perfusion process to be superior strategy for adenovirus-based vaccine production compared to the batch-mode strategy (1,467 IFU/cell). Furthermore, our PATFP system shows potential to be comparable to the XCell ATF® system, and it would become an alternative perfusion strategy for the vaccine production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.